cs 'embeddings' 태그의 글 목록
본문 바로가기
  • 매일 한걸음씩
  • 매일 한걸음씩
반응형

embeddings2

BERT(Pre-training of Deep Bidirectional Transformers for Language Understanding) 정리 - 2 ( Transformer, Attention) 해당 글은 이 글, 그리고 한국어 임베딩 책(by 이기창님)을 참고하여 작성하였음을 미리 알려드립니다. 4. 어텐션 메커니즘 2) 기존 모델과 비교 CNN과 비교해보면 CNN은 일정 window만큼만 단어들을 보기 때문에 문장 전체에서의 연결성이 떨어진다. 즉, 길이가 긴 문장에서 첫번째 단어와 마지막쪽 단어간의 연관성을 파악하기가 어렵다. RNN과 비교해보면 이전 포스트에서 언급했듯이 그래디언트 배니싱(Gradient Vanishing)문제가 일어날 가능성이 있다. 첫번째 단점을 어텐션은 문장의 모든 단어들을 weighted 로 고려한다는 점에서 극복하였고, 두번째 단점은 앞서 scaled dot-product attention에서 key 행렬 차원수의 제곱근으로 나눠 scale함으로써 극복하였다. (.. 2020. 11. 14.
Embeddings에 대한 이해 -1 | 이미지 기반 유사도, 텍스트 기반 유사도에 대해 이 글은 다음의 글을 참고하여 작성되었습니다. cloud.google.com/solutions/machine-learning/overview-extracting-and-serving-feature-embeddings-for-machine-learning?hl=ko 개요: 머신러닝을 위한 특성 임베딩 추출 및 제공 | 솔루션 | Google Cloud 이 문서는 ML(머신러닝)을 위한 특성 임베딩 추출 및 제공 과정을 살펴보는 시리즈 중 하나입니다. 이 문서에서는 특성 임베딩의 개념과 특성 임베딩이 중요한 이유를 설명합니다. 또한 텍스트 �� cloud.google.com 현재 일하는 스타트업에서는 이미지 기반의 유사도를 측정하여 특정 이미지가 주어졌을 때 이와 유사한 이미지를 찾는 일을 하고 있다. 이미.. 2020. 8. 10.
728x90
반응형